SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination

نویسندگان

  • Nathan R. Wilson
  • Adam J. Olm-Shipman
  • Diana S. Acevedo
  • Kanagaraj Palaniyandi
  • Everett G. Hall
  • Edina Kosa
  • Kelly M. Stumpff
  • Guerin J. Smith
  • Lenore Pitstick
  • Eric C. Liao
  • Bryan C. Bjork
  • Andras Czirok
  • Irfan Saadi
چکیده

Cranial neural crest cells (CNCCs) delaminate from embryonic neural folds and migrate to pharyngeal arches, which give rise to most mid-facial structures. CNCC dysfunction plays a prominent role in the etiology of orofacial clefts, a frequent birth malformation. Heterozygous mutations in SPECC1L have been identified in patients with atypical and syndromic clefts. Here, we report that in SPECC1L-knockdown cultured cells, staining of canonical adherens junction (AJ) components, β-catenin and E-cadherin, was increased, and electron micrographs revealed an apico-basal diffusion of AJs. To understand the role of SPECC1L in craniofacial morphogenesis, we generated a mouse model of Specc1l deficiency. Homozygous mutants were embryonic lethal and showed impaired neural tube closure and CNCC delamination. Staining of AJ proteins was increased in the mutant neural folds. This AJ defect is consistent with impaired CNCC delamination, which requires AJ dissolution. Further, PI3K-AKT signaling was reduced and apoptosis was increased in Specc1l mutants. In vitro, moderate inhibition of PI3K-AKT signaling in wildtype cells was sufficient to cause AJ alterations. Importantly, AJ changes induced by SPECC1L-knockdown were rescued by activating the PI3K-AKT pathway. Together, these data indicate SPECC1L as a novel modulator of PI3K-AKT signaling and AJ biology, required for neural tube closure and CNCC delamination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tight junction protein claudin-1 influences cranial neural crest cell emigration

The neural crest is a population of migratory cells that follows specific pathways during development, eventually differentiating to form parts of the face, heart, and peripheral nervous system, the latter of which includes contributions from placodal cells derived from the ectoderm. Stationary, premigratory neural crest cells acquire the capacity to migrate by undergoing an epithelial-to-mesen...

متن کامل

p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes.

Neural crest development involves epithelial-mesenchymal transition (EMT), during which epithelial cells are converted into individual migratory cells. Notably, the same signaling pathways regulate EMT function during both development and tumor metastasis. p53 plays multiple roles in the prevention of tumor development; however, its precise roles during embryogenesis are less clear. We have inv...

متن کامل

A critical role for Cadherin6B in regulating avian neural crest emigration.

Neural crest cells originate in the dorsal neural tube but subsequently undergo an epithelial-to-mesenchymal transition (EMT), delaminate, and migrate to diverse locations in the embryo where they contribute to a variety of derivatives. Cadherins are a family of cell-cell adhesion molecules expressed in a broad range of embryonic tissues, including the neural tube. In particular, cadherin6B (Ca...

متن کامل

Ets-1 Confers Cranial Features on Neural Crest Delamination

Neural crest cells (NCC) have the particularity to invade the environment where they differentiate after separation from the neuroepithelium. This process, called delamination, is strikingly different between cranial and trunk NCCs. If signalings controlling slow trunk delamination start being deciphered, mechanisms leading to massive and rapid cranial outflow are poorly documented. Here, we sh...

متن کامل

Cadherin-6B is proteolytically processed during epithelial-to-mesenchymal transitions of the cranial neural crest

The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016